最近在设置一款国外VPS的时候,能够连上,可是不能够使用浏览器上网,后来发现问题居然是MTU错误,重新设置后就可以上网了。今天我就说说MUT是怎么回事,我们在国外VPS中有可能会用到。
MTU是Maximum Transmission Unit的缩写,中文名是:最大传输单元。
我们先看下网络中注明的7层协议。
如果上面的图你觉得不好看,我们看看下面的表格:
OSI中的层 | 功能 | TCP/IP协议族 |
---|---|---|
应用层 | 文件传输,电子邮件,文件服务,虚拟终端 | TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet |
表示层 | 数据格式化,代码转换,数据加密 | 没有协议 |
会话层 | 解除或建立与别的接点的联系 | 没有协议 |
传输层 | 提供端对端的接口 | TCP,UDP |
网络层 | 为数据包选择路由 | IP,ICMP,RIP,OSPF,BGP,IGMP |
数据链路层 | 传输有地址的帧以及错误检测功能 | SLIP,CSLIP,PPP,ARP,RARP,MTU |
物理层 | 以二进制数据形式在物理媒体上传输数据 | ISO2110,IEEE802,IEEE802.2 |
从上面的表格中可以看到,在7层网络协议中,MTU是数据链路层的概念。MTU限制的是数据链路层的payload,也就是上层协议的大小,例如IP,ICMP等。
MTU作用
举一个最简单的场景,你在家用自己的笔记本上网,用的是路由器,路由器连接电信网络,然后访问了www.baidu.com,从你的笔记本出发的一个以太网数据帧总共经过了以下路径:
笔记本 -> 路由器 -> 电信机房 -> 服务器
其中,每个节点都有一个MTU值,如下:
1500 1500 1500
笔记本 -> 路由器 -> 电信机房 -> 服务器
假设现在我把笔记本的MTU最大值设置成了1700,然后发送了一个超大的ip数据包(2000),这时候在以外网传输的时候会被拆成2个包,一个1700,一个300,然后加上头信息进行传输。
1700 1500 1500
笔记本 -> 路由器 -> 电信机房 -> 服务器
路由器接收到了一个1700的帧,发现大于自己设置的最大值:1500,如果IP包DF标志位为1,也就是不允许分包,那么路由器直接就把这个包丢弃了,根本就不会到达电信机房,也就到不了服务器了,所以,到这里我们就会发现,MTU其实就是在每一个节点的管控值,只要是大于这个值的数据帧,要么选择分片,要么直接丢弃。
为什么MTU通常设置为1500
其实一个标准的以太网数据帧大小是:1518,头信息有14字节,尾部校验和FCS占了4字节,所以真正留给上层协议传输数据的大小就是:1518 - 14 - 4 = 1500,那么,1518这个值又是从哪里来的呢?
假设取一个更大的MTU值会怎么样?
假设MTU值和IP数据包大小一致,一个IP数据包的大小是:65535,那么加上以太网帧头和为,一个以太网帧的大小就是:65535 + 14 + 4 = 65553,看起来似乎很完美,发送方也不需要拆包,接收方也不需要重组。
那么假设我们现在的带宽是:100Mbps,因为以太网帧是传输中的最小可识别单元,再往下就是0101所对应的光信号了,所以我们的一条带宽同时只能发送一个以太网帧。如果同时发送多个,那么对端就无法重组成一个以太网帧了,在100Mbps的带宽中(假设中间没有损耗),我们计算一下发送这一帧需要的时间:
( 65553 * 8 ) / ( 100 * 1024 * 1024 ) ≈ 0.005(s)
在100M网络下传输一帧就需要5ms,也就是说这5ms其他进程发送不了任何数据。如果是早先的电话拨号,网速只有2M的情况下:
( 65553 * 8 ) / ( 2 * 1024 * 1024 ) ≈ 0.100(s)
100ms,这简直是噩梦。其实这就像红绿灯,时间要设置合理,交替通行,不然同一个方向如果一直是绿灯,那么另一个方向就要堵成翔了。
MTU值既然大了不行,那把MTU的值设置小一点可以么?
假设MTU值设置为100,那么单个帧传输的时间,在2Mbps带宽下需要:
( 100 * 8 ) / ( 2 * 1024 * 1024 ) * 1000 ≈ 5(ms)
时间上已经能接受了,问题在于,不管MTU设置为多少,以太网头帧尾大小是固定的,都是14 + 4,所以在MTU为100的时候,一个以太网帧的传输效率为:
( 100 - 14 - 4 ) / 100 = 82%
写成公式就是:( T - 14 - 4 ) / T,当T趋于无穷大的时候,效率接近100%,也就是MTU的值越大,传输效率最高,但是基于上一点传输时间的问题,来个折中的选择吧,既然头加尾是18,那就凑个整来个1500,总大小就是1518,传输效率:
1500 / 1518 = 98.8%
100Mbps传输时间:
( 1518 * 8 ) / ( 100 * 1024 * 1024 ) * 1000 = 0.11(ms)
2Mbps传输时间:
( 1518 * 8 ) / ( 2 * 1024 * 1024 ) * 1000 = 5.79(ms)
至于MUT的值最少是64,这个值是因为和以太网帧在半双工下的碰撞有关,具体这里就不展开了。
玩游戏,有可能你把MTU改了就不卡了
路由器默认值大多都是1500,理论上是没有问题的,那为什么我玩游戏的时候改成1480才能流畅呢?原因在于当时我使用的是ADSL上网的方式,ADSL使用的PPPoE协议。
PPPoE协议介于以太网和IP之间,协议分为两部分,PPP( Point to Point Protocol )和oE( over Ethernet ),也就是以太网上的PPP协议,而PPPoE协议头信息为:
| VER(4bit) | TYPE(4bit) | CODE(8bit) | SESSION-ID(16bit) | LENGTH(16bit) |
这里总共是48位,也就是6个字节,那么另外2个字节是什么呢?答案是PPP协议的ID号,占用两个字节,所以在PPPoE环境下,最佳MTU值应该是:1500 - 4 - 2 = 1492。
当时我的上网路径如下:
PC -> 路由器 -> 电信
我在路由器进行拨号,然后PC连接路由器进行上网。
问题就出在路由器拨号,如果是PC拨号,那么PC会进行PPPoE的封装,会按照MTU:1492来进行以太网帧的封装,即使通过路由器,路由器这时候也只是转发而已,不会进行拆包。
而当用路由器拨号时,PC并不知道路由器的通信方式,会以网卡的设置,默认1500的MTU来进行以太网帧的封装,到达路由器时,由于路由器需要进行PPPoE协议的封装,加上8字节的头信息,这样一来,就必须进行拆包,路由器把这一帧的内容拆成两帧发送,一帧是1492,一帧是8,然后分别加上PPPoE的头进行发送。
平时玩游戏不卡,是因为数据量路由器还处理得过来,而当进行群怪AOE的时候,由于短时间数据量过大,路由器处理不过来,就会发生丢包卡顿的情况,也就掉线了。
设为1480是避免二次拨号带来的又一次PPPoE的封装,因为时间久远,没办法回到当时的场景再去抓包了
总结一下,1518这个值是考虑到传输效率以及传输时间而折中选择的一个值,并且由于目前网络链路中的节点太多,其中某个节点的MTU值如果和别的节点不一样,就很容易带来拆包重组的问题,甚至会导致无法发送。
怎样修改VPS服务器 MTU值
下面我们就说一说Linux VPS和Windows VSP的值怎样修改。
Linux VPS 修改MTU值
因为Linux的版本众多,这里主要说下Centos 6 和 Centos 7的设置。
Centos 6 MTU值的修改只需要输入如下命令就可以了:
ifconfig eth0 mtu 这里填写MTU的值
Centos 7 MTU值修改需要修改文件,输入如下命令:
vi /etc/sysconfig/network-scripts/ifcfg-eth0
然后增加如下内容:
MTU="这里填写MTU的值"
保存后输入如下命令重启网卡生效就可以了。
service network restart
然后重新启动
reboot
Windows VPS 修改MTU值
1、以管理员身份运行命令行
2、在命令提示符中输入如下命令,按下回车键查看当前的MTU值
netsh interface ipv4 show subinterfaces
接着按下面格式输入下面的命令, 然后按下回车键:
netsh interface ipv4 set subinterface "连接名" mtu=这里填写MTU的值 store=persistent
比如用前面的例子就应该像下面这样写:
netsh interface ipv4 set subinterface "WLAN" mtu=1458 store=persistent
出现“确定”提示 则说明修改完成。
以上就是关于MTU的一些介绍,并介绍了Linux VPS和Windows VPS修改MTU的方法,希望可以帮助到有需要的朋友。